RECLANIATION Managing Water in the West

Use of Ceramic Membranes for Produced Water Treatment

Katie Benko, Bureau of Reclamation and Colorado School of Mines Jörg Drewes, Colorado School of Mines

Pei Xu, Colorado School of Mines

Tzahi Cath, Colorado School of Mines

Outline

- Why use ceramic membranes for produced water treatment
- Benefits and limitations of ceramic membranes
- Comparison of ceramic and polymeric membranes
- Ceramic membrane manufacturers and products
- Use of ceramic membranes for produced water

Treatment of Produced Water

Degree of treatment depends on raw water quality and desired end use

Livestock & Crop Irrigation

Pretreatment Technologies

- Current approaches:
 - Dissolved air flotation
 - Media filtration

Hydroflow™

- Polymeric membranes
- Novel approaches:
 - Ceramic microfiltration and ultrafiltration
 - Membrane distillation

CeraMem®

(HydroflowTM)

Treatment Design Criteria

- Geographical issues
 - Minimal Maintenance
 - Easy to operate
 - Robust and reliable
- Changing water quantity and quality
 - Flexible
 - Modular
- Cost
 - Minimal pretreatment
 - Low chemical and energy demand

Benefits and Limitations of Ceramic Membranes

- Benefits
 - High mechanical strength
 - High chemical compatibility
 - High flux (up to 300 gfd)
 - Long operational life
 - Thermal stability
 - Potentially lower life-cycle cost
- Potential limitations
 - High capital cost

Membrane Filtration Market

The ceramic membrane market share is expected to grow in future years!

Advances in materials, configuration, and operational experience will make ceramic membranes more widely used.

Data from Pall Corporation

Membrane Transport Properties

	Pure Water Permeance (L/m²/hr/Pa)	Membrane Resistance (1/m)
Ceramic UF	1.3 ± 0.1	$2.2 \times 10^5 \pm 0.2 \times 10^5$
Polymeric UF	Polymeric UF 0.87 ± 0.08	

- Ceramic membranes have significantly higher permeance and lower membrane resistance than polymeric membranes
- Ceramic membranes have a lower membrane resistance, therefore require a lower pressure to produced the same volume of water

Cost Comparison

	Material Cost (\$/ft ²)	Material Cost (\$/vol produced)
Ceramic UF	180	60
Polymeric UF	40	20

- Fewer ceramic membranes are required to treat the same volume of water
- Ceramic membranes have higher capital cost but longer lifespan

SEM: Ceramic and Polymeric

Ceramic Membrane Manufacturers*

	Product Line(s)	Filtration Range	Support Materials	Membrane Materials	Channel Configuration
Pall	Membralox® Schumasiv®	5nm to 0.2 µm	Al ₂ O ₃	Al_2O_3 (MF) ZrO_2 and TiO_2 (UF)	Hexagonal and round
Corning	CerCor®	5nm to 0.2 µm	Mullite $(3Al_2O_3 \cdot 2$ $SiO_2)$	ZrO ₂ (MF) TiO ₂ (UF)	Square and round
TAMI	Ceram Inside®	0.02 μm to 1.4μm	ATZ	ZrO ₂ (MF) TiO ₂ (UF)	Flower shaped
Atech	Atech	0.01 μm to 1.2 μm	Al ₂ O ₃	Al ₂ O ₃ (MF) ZrO ₂ and TiO ₂ (UF)	Single or multiple round
Orelis	Kerasep™	5 kDa to 0.8 µm	Al_2O_3	ZrO ₂ and TiO ₂	Single or multiple round

^{*}Not a complete list

Contaminant Removal Capability

- What they will remove
 - Suspended solids
 - Oil and grease
 - Organic carbon (to some degree)
 - Metal oxides
- What they will NOT remove
 - Dissolved ions
 - Dissolved organics

Ceramic Membrane System Operation

Dead-end versus cross-flow filtration

Important Operating Parameters

- Flux: volumetric flow rate of product water per area of membrane
- Trans-membrane pressure: average of feed and reject pressure minus filtrate pressure
- Cross-flow velocity: Velocity of water moving through membrane channel
- Backwash or backpulse: flow of water from the filtrate size to the feed size, rather than the feed side to the filtrate
- In-line coagulation: dose of coagulant in the feed stream with no flocculation or settling; formation of pin-sized floccs that are more easily rejected by the membrane and increase the rejection of dissolved organics

CBM Produced Water Raton Basin

Membrane Specs:	Feed Water:	Operating Conditions:	
85 channels	TDS = 2300 mg/L	TMP = 60 psi	
cylindrical channels	TOC = 0.27 mg/L	Crossflow = 0.46 ft/s	
0.01 um pore size	TSS = 0.7 mg/L	Full recycle	
	Total Fe > 0.3 mg/L	Backwash every 15 min	
	SDI = 18	No coagulant	

Full-Scale Ceramic Membrane Treatment of Produced Water

- Ceramic membranes used to remove organic contaminants approximately 1 to 3 um in size and as pretreatment to RO
- System configuration:
 - cross-flow velocity = 10 fps
 - backpulse every 90s
 - chemical cleaning every 24 hrs
- Filtrate SDI < 1, suitable as pretreatment for RO

- Summary
 Ceramic membranes are a viable technology for produced water treatment.
- There are a number of different ceramic membrane manufacturers with a wide variety of products to choose from.
- Ceramic membranes can remove silt, particulates, oil and grease, metal oxides, and some dissolved organic matter.
- Operational conditions of ceramic membranes still need to be optimized for different water types.
- Ceramic membranes have worked effectively at the laboratory scale and full scale for treatment of produced water.

Acknowledgements

- Bureau of Reclamation
 Science and
 Technology Program
- NWRI Research Fellowship
- Corning Incorporated
 - George Kellogg
 - Andy Pierce
- Bureau of Reclamation
 - Erik Jorgensen
 - Dan Gonzales
 - Tom Bunnelle

- AQWATEC
 - Ryan Decker
 - Katharine Dahm
 - Eric Dickenson
 - Dean Heil
 - JT Teerlink
- Research Partnership to Secure Energy for America
- Dave Stewart, Stewart Environmental

Contacts

Katie Benko, Bureau of Reclamation kbenko@do.usbr.gov (303) 931-8396

Jörg Drewes, Colorado School of Mines jdrewes@mines.edu (303) 273-3401

